home *** CD-ROM | disk | FTP | other *** search
/ 800 College Boards / 800 College Boards.iso / cbrd56 / ebb (.txt) < prev    next >
Microsoft Windows Help File Content  |  1984-07-30  |  10KB  |  2 lines

  1. :SB                                     :SH0431a    b                           :SP208008245048245048245048             :SP245008208048208048208048             :SF                                     E. Equality of Angles and Sides.                                                Make sure you know these                theorems, definitions and               assumptions.                                                                    NOTE: < = Angle                               ^ = Degrees                                                               1. Vertical angles are equal.                                                        <a = <b                            :RA                                     :SD                                     :SB                                     :SH1828A        B                       :SH0933C                                :SP196136252136224072193136             :SF                                     2. An isosceles triangle has two sides  equal in length. The angle between the  equal sides is called the vertex angle. The other two angles are called base    angles and are equal.                                                           If AC = BC, then <A = <B                                                        3. If two angles of a                   triangle are equal, the                 sides opposite are equal.                                                       If <A = <B, then AC = BC.               :RA                                     :SD                                     :SB                                     :SH1531A       B                        :SH0735C                                :SH14311                                :SP190112266112243080217112             :SF                                     4. An equilateral triangle (ABC) is     equiangular, and an equiangular         triangle is equilateral.                                                        If AB = BC = AC,                        then <A = <B = <C                                                               5. An exterior angle                    of a triangle is the                    sum of the non-adjacent                 interior angles.                                                                <1 = <B + <C                            :RA                                     :SD                                     :Q                                      :SB                                     :SH0618A              B                 :SH0540D                                :SH0328C                                :SH0740E                                :SP266039112039174024266048             :SF                                     1. Given: Isosceles {ABC                with AC = BC, and <DBE =                20^. Find <C.                                                                   (a) 20^  (b) 70^  (c) 140^                                                      (d) 160^  (e) 150^                      :RCC                                    1. (c) 140^ Ans.                                                                Since <DBE and <B of {ABC               are vertical angles, they               are equal                                                                          <B = <DBE = 20^                                                              Since AC = BC the angles                opposite them are equal.                                                                   <A = <B                                                               <A + <B + <C = 180^                                                             20^+ 20^+ <C = 180^                                                                       <C = 140^ Ans.               :RA                                     :SD                                     :Q                                      :SB                                     :SH1328A      B                         :SH0532C                                :SH0230D                                :SP217046196096238096206016             :SF                                     2. Given: Isosceles {ABC                with <ACD = 130^. Find: <B.                                                     (a) 50^  (b)  60^  (c) 65^                                                      (d) 130^  (e) 75^                       :RCC                                    2. (c) 65^ Ans.                                                                 <ACD and <ACB are                       supplementary                                                                    <ACD + <ACB = 180^                                                              130^ + <ACB = 180^                                                                     <ACB =  50^                     :RA                                     The angles of triangle                  total 180^                                                                         A + <B + <C = 180^                                                            <A + <B + 50^ = 180^                                                                  <A + <B = 130^                                                           In the isosceles                        triangles, <A = <B                                                               <B + <B = 130^                                                                       <B =  65^ Ans.                    :RA                                     :SD                                     :Q                                      :SB                                     :SH0435C                                :SH0928 y                               :SH1028D   A     B                      :SH0729E                                :SH1236F                                :SP189071259071241038224071             :SP196056252088252088252088             :SF                                     3. Given: {ABC is equilateral and <CAF  is a right angle. Find: <y.                                                     (a) 30^  (b) 60^  (c) 90^                                                       (d) 150^  (e) 45^                       :RCA                                    3. (a) 30^ Ans.                                                                 Since ABC is equilateral,                                                       <CAB = 60^                                                                      <BAF = <CAF - <CAB                                                              <BAF = 90^ - 60^                                                                     = 30^                                                                      <y is a vertical angle to <BAF                                                    <y = <BAF = 30^ Ans.                  :RA                                     :SD                                     :Q                                      :SB                                     :SH1032A     B                          :SH0531D   C   E                        :SP224072259072241038224072             :SP215039266039266039266039             :SF                                     4. Given: {ABC with AB = 10in.; <B =    60^; DCE || AB; <DCA = 60^. Find:       Length of BC                                                                    (a) 4"  (b) 10"  (c) 20"                                                        (d) 50" (e) 8"                          :RCB                                    4. (b) 10" Ans.                                                                 <A = <DCA because they                  are alternate interior                  angles                                                                                       <A =  60^                                                             <A + <B + <C = 180^                                                            60^ + 60^+ <C = 180^                                                                       <C =  60^                                                          Therefore {ABC is equilateral and BC =  AB = 10". Ans.                          :RA                                     :SD                                     :Q                                      :SB                                     :SP224071259071241038224071             :SP279032259071279071279071             :SH1032A     B D                        :SH0435C    E                           :SF                                     5. BE||AC, and BE                       bisects <CBD. Then,                                                             (a) AB = AC  (b) AB = BC                                                        (c) AC = BC  (d) AC = BE                                                        (e) AB = AC = BC                        :RCB                                    5. (b) AB = BC Ans.                                                             Since <ACB and <CBE are                 alternate interior angles,              they are equal. The sum of              the angles around a point               on one side of a straight               line is 180^.                                                                   <CBA + <CBE + <EBD = 180^                                                        <CBE = <EBD                                                                     <CBA = 180^ - 2 <CBE                                                            <CBA = 180^ - 2 <ACB                   :RA                                     The sum of the angles of                a triangle is 180^                                                              <CAB + <ACB + <CBA = 180^                                                       <CAB = 180^ - <ACB - <CBA                                                       <CAB = 180^ - <ACB                             - (180^ - 2<ACB)                                                         <CAB = <ACB                                                                     Since sides opposite equal angles are   equal, AB = BC Ans.                     :SD                                     :ET                                     :ET                                                                             
  2.